US ERA ARCHIVE DOCUMENT

HED Records Center Series 361 Science Reviews - File 080803\_0021400\_080792\_00000000\_R030756 - Page, 2 of 4 Metabolism Committee File

OPP OFFICIAL RECORD HEALTH EFFECTS DIVISION SCIENTIFIC DATA REVIEWS **EPA SERIES 361** 



## UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

#JG 7 1932

PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT:

Atrazine, Simazine, and Cyanazine. Results of the

Metabolism Committee Meeting of 7/9/92

FROM:

Michael S. Metzger, Chemist

Chemistry Branch 2 - Reregistration Support

Health Effects Division (H75,09C)

THRU:

Edward Zager, Chief

Chemistry Branch 2 - Reregistration Support

Health Effects Division (H7509C)

TO:

The Metabolism Committee.

## Individuals in Attendance: A.

Metabolism Committee: (Signatures indicate concurrence unless otherwise stated)

Karl Baetcke

Richard Loranger

Michael Metzger

Alberto Protzel

Richard Schmitt

George Ghali

(Michael F1 ood subs tuting for)

concin

Dearfield substituting for)

Printed on Recycled Paper 5

2

 Scientists: (Non-committee members responsible for data presentation; signatures indicate technical accuracy of panel report)

Henry Spencer

Metabolism Committee Members in Absentia: (Committee members who were unable to attend the discussion; signatures indicate concurrence with the overall conclusions of the committee)

Reto Engler

## B. Material Reviewed

The purpose of this metabolism committee meeting was to clarify issues related to triazine pesticides in order to proceed with Reregistration and/or Special Review.

TOX indicated that in the absence of data on the toxicity of metabolites of triazines, we would have to assume that all metabolites containing a triazine ring with a substituent have toxicity equivalent to the corresponding parent compound. substituent on the triazine ring would suffice. unlikely that metabolites will be found which do not have a Since it is substituent on the triazine ring, we will make the assumption that the total triazine residue includes only metabolites with substituents on the triazine ring. The residue levels used for exposure assessment should reflect total residues of all metabolites containing a triazine ring. Although structure-activity relationships indicate that the substitution on the triazine ring may affect the toxicity, the available information is not adequate to allow the Agency to conclude that a class of metabolites, such as the unchlorinated hydroxy metabolites, should not be included in the exposure assessment. registrant has indicated that they are carrying out a chronic feeding/cancer study utilizing hydroxyatrazine. This study not been required by the Agency in a DCI. If this study is This study has submitted and shows that hydroxyatrazine is not carcinogenic, then the exposure assessment and tolerance expression for atrazine will include only the parent and chloro metabolites. the study indicates that hydroxyatrazine is carcinogenic, then risk for atrazine will be calculated considering the cancer potency of both the parent and hydroxyatrazine. a decision on how the results of the hydroxyatrazine TOX has not made carcinogenicity study will affect the other subject triazine pesticides.

There are currently no analytical methods available to allow for determination of the total residues of metabolites containing

triazine rings with substituents. The Agency has issued DCIs for atrazine and simazine requiring geographically representative cradiolabel field studies for all commodities on which atrazine and simazine are registered. The registrant currently has studies underway for representative crops for atrazine. The committee concluded that similar field radiolabel studies should also be required for ametryn. These studies will allow exposure assessment for total triazine ring residues as the total triazine ring-containing metabolites. Field radiolabel studies will not be required for cyanazine since a small set of discreet, triazine ring residue.

Enforcement methodology which measures all metabolites containing a triazine ring is not available. Attempts to convert all triazine metabolites to a common moiety such as cyanuric acid have resulted in high background levels in untreated commodities, apparently due to conversion of naturally occurring compounds to cyanuric acid. In addition to measuring the total radioactivity in the radiolabel field studies, the registrant must identify major components of the total radioactivity in these crops. If "marker" metabolites to use in developing marker-based analytical methods for enforcement purposes and for non-radiolabel field residue data.

The committee recommends that Special Review proceed utilizing the available residue and toxicity data. Risk assessments for each of these pesticides should incorporate anticipated residue restimates using the best available data to determine total residues of metabolites containing the triazine ring. The committee was made aware that estimated risks utilizing the total triazine ring with substituent residue would substantially exceed parent and chloro metabolites are considered, this risk estimate would likely be greatly reduced for all commodities except for sugarcane treated with atrazine.

CC: M.Metzger (CBRS), Circu, Atrazine Reg. Std. File, RF, SF,
CBTS, Metabolism Committee file, Signers above, W. Burnam (SACB)
H7509C:CBRS:M.Metzger:MM:CM#2:Rm816G:305-5883:8/3/92
RDI: E.Zager: 8/3/92